ECCOMAS Computational Fluid Dynamics Conference 2001
Swansea, Wales, UK, 4-7 September 2001
©ECCOMAS

THREE-DIMENSIONAL FLUID-STRUCTURE
INTERACTION MODELLING OF BLOOD FLOW IN
ELASTIC ARTERIES

Esko Jarvinen, Mikko Lyly, Juha Ruokolainen, Peter Raback

CSC - Scientific Computing Ltd.
P. O. Box 405, FIN - 02101, Espoo, Finland
web page: http://www.csc.fi

Key words: Hemodynamics, artery, fluid-structure interaction, finite element method,
computer modelling

Abstract. This paper presents a scheme for the loosely coupled modelling of fluid-
structure interaction in the elastic artery. The scheme is tested with a simple 3D test
case of propagating pressure pulse in an artery. Qualitative agreement with the physi-
ologically correct features of the pulsatile flow in an elastic artery were obtained. The
computations were carried out by using an in-house finite element based solver. The blood
was modelled as an incompressible, Newtonian fluid. The artery model was based on non-
linear elasticity, and the coupling of the fluid and the solid were based on an algorithm
using ALE formulation. The systems of nonlinear equations were solved using a parallel
supercomputer.
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1 INTRODUCTION

Cardiovascular diseases remain the leading cause of death in the industrialized countries
[1]. Considerable evidence exists that fluid mechanical forces have a strong influence
on the initiation and progression of several cardiovascular diseases, e.g., atherosclerotic
and ischemic diseases [2, 3]. Early events in the atherosclerotic process are strongly
characterized by the interaction of the flow and the vessel [4, 5, 6]. The vessel wall
mechanics is considered to have also a strong influence on these processes [7, 8].

The large arteries of the human body behave as cushions, softening the pulsatile flow
generated by the contracting left ventricle of the heart into a steady flow in the periferial
arteries. The arterial walls are viscoelastic in nature. Stiffened artery walls can disor-
der this rhythmic interaction between the heart and the artery, increasing the speed of
the pressure pulses propagating in the circulatory system. In a stiffened aorta, the pres-
sure pulse reflects from the periferial circulation sooner, causing abnormal systolic blood
pressure and higher left ventricular afterload [9].

The flowing substance, blood, also has some special characteristics. Blood is a non-
Newtonian multiphase substance, which is slightly shear-thinning and viscoelastic [10].
Blood is a suspension of red cells, white cells, platelets and the plasma. The viscosity of
blood depends on the proportion of the particulate matter, which normally account for
about 40-45 per cent by volume of the blood. Nevertheless, it is well known that in large
arteries at moderate or high shear rates blood behaves as a Newtonian fluid [10].

Computational modelling offers a powerful tool to analyze basic relations between var-
ious solid and fluid mechanical parameters in the circulatory system. Computational
approaches ranging from simple lumped models to full 3D simulations have been used.
The advantage of the lumped models is the capability to simulate an entire human cardio-
vascular system as a set of ordinary differential equations, often represented by analogy
to electrical circuits [12, 13]. In quasi-1D model the distensibility of the vessels can also
be taken into acount [14]. Along with the increased availability of powerful computer
facilities, three dimensional modelling has become more popular. The advantage of these
models is their capability to produce detailed knowledge about the time-dependent flow
characteristics of the system. However, these models are computationally far too intensive
to be used in the analysis of a larger part of the circulatory system. Such models have
therefore usually been limited to tackle smaller subjects, like a single carotid or coronary
artery bifurcation.

The computation of unsteady flows in the circulatory system become even more time-
consuming when the distensibility of the vessels is taken into account. Earlier compu-
tations have often been done using mostly rigid geometries. During the last decade, an
increasing number of articles concidering the fluid-structure interactive (FSI) models of
pulsatile blood flow in the elastic vessel have been published, see e.g. [15, 16, 17, 18, 19].
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In some of these papers, the effect of wall distensibility is observed to have only a minor
influence, for example, on the overall structure of the flow patterns. However, we believe
that in many cases the elasticity can not be neglected in the study of pulsatile flow in
the cardiovascular system. The elasticity most obviously has an important role in the
analysis of the endothelial cell dysfunction mechanism, pressure pulse propagation in a
conduit, interaction of the heart and the systemic circulation, pulsatile flow passing an
anastomosis or a severe stenotic artery, mechanical interaction of stent and the vessel
wall, or interaction between tissues with different material characteristics.

The purpose of the present study was to construct a loosely coupled computational
fluid-structure interaction scheme for modelling pulsatile flow in an elastic artery. In this
paper, we start by representing the mathematical foundation for the FSI problem. The
computations were carried out by using an in-house finite element based solver called
ELMER. The blood was modelled as an incompressible and Newtonian fluid. The artery
model was based on nonlinear elasticity and the coupling of the fluid and the solid models
was based on an algorithm using ALE formulation. The systems of nonlinear equations
were solved using parallel supercomputer. Finally, the results with a simple test case are
presented and discussed.

2 COUPLED FLUID-STRUCTURE PROBLEM

Let Qr(0) C R® and Q5(0) C R® be open bounded domains representing the unde-
formed configurations of the fluid and solid at rest, respectively. The interface boundary
which initially separates the domains is denoted by I'r5(0) = 0Qr(0) N0Qs(0), see Figure
1 below.

Qg

N o

Qp I'rs

Figure 1: Interface surface between wall and fluid.

Deformation of the solid. The mathematical model which describes the mechanical
behaviour of the solid consists of the equilibrium equations

O*u
P~ V-r=f in Qg(0) (1)
and
n-7=g onIrs(0), (2)
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where w(z,t) is the unknown displacement vector, p(x) is the density of the material,
f(z,t) is the body force and g(z,t) the boundary traction. The vector n(z) is the unit
outward normal to the boundary. The stress tensor 7(z,t) depends on the displacement
through the following definitions (see e.g. [20] for more details):

pi=x+u Deformation (motion)
F:=Vop Deformation gradient
E :=(FTF —I) Green-StVenant strain
o=C:F 274 Piola-Kirchhoff stress
T=F-0 1%t Piola-Kirchhoff stress
The deformed configurations of the solid and interface boundary are defined for ¢t > 0
as
Qs(t):{yERg | y:go(x,t), xEQS(O)}
and

Trs(t) ={y €R® | y=p(x,t), v € Trg(0)}.

For homogenic and isotropic materials the fourth order elasticity tensor C' is defined
in terms of the Lamé parameters A and u as

C:E=2uE+ Mr(E)I. (3)

Deformation of the fluid domain. Next, since our FSI-model will be based on an
ALE-formulation, we have to construct a one-to-one map which associates the reference
configuration Qr(0) to the actual domain Qg(t) for ¢ > 0. As the evolution of the fluid
domain is completely characterized by the movement of the interface boundary, it suffices
to extend the displacement of the solid in an appropriate way from I'rs(0) to Qg(0),
define the deformation map as ¢ =z + u in Qr(0), and to write

Qr(t) ={y e R | y=p(z,t), z € Qr(0)}.

The extension of the displacement can be defined freely as long as the corresponding
deformation is continuous, orientation preserving, and sufficiently smooth. One possibility
here is to use the harmonic extension, i.e., Au = 0 with the Laplace operator applied
componentwise. A more practical extension is obtained from the linear elasticity equation

V-C:e(u)=0 in Qp(0), (4)

where C' is the elasticity tensor and e(u) = 1(Vu” + Vu) the linearized strain tensor. The
numerical examples will be given using Equation (4) with C' defined by Equation (3).



Esko Jarvinen, Mikko Lyly, Juha Ruokolainen, Peter Raback

Fluid flow. The fluid flow is characterized by the unsteady incompressible Navier-Stokes
equations which we write in an Arbitrary-Lagrangian-Eulerian (ALE) formulation as fol-
lows (cf. [21] for more details):

9,
p(a—:+(v-V)v—(V-V)v>—V-a:f in Qp(t) (5)
and
V-v=0 in Qg(t), (6)
where v(z, t) is the unknown fluid velocity vector, V(z,t) := 2u(¢ *(z,t),t) is the known

deformation velocity (also referred to as the “mesh velocity”), f(x,t) is the body force
and o(z,t) the stress tensor. For Newtonian fluids the stress is defined as

o =2pe(v)—pl,
where p(x,t) is the pressure, u the viscosity, and ¢(v) the linear strain rate tensor.

We assume that no slipping occures between the wall and the fluid, i.e.,
v=V on rg(t).
From the solution o we finally compute the boundary traction g in Equation (2) as

g(x, t) =n-o(p(z,t),t) on Trg(0). (7)

Pulse wave propagation and arterial compliance. The distensibility of the arterial
wall has a major influence on the nature of the waveform within elastic conduit. In addi-
tion to the discontinuities in the anatomy (e.g., bifurcations or stenoses), the compliance
of the vessel governs the pulse wave propagation in the circulatory system. Since in this
work we consider pulsatile flow in an elastic tube, for the validation of the computed
results we need to choose some measurable quantities which characterize the dynamics
deforming system. The pulse wave velocity in an elastic tube can be estimated by the

Moens-Korteweg equation [11]
Eh
= 8
Co =4/ >R py (8)

where ¢ is the pulse wave velocity, F is the Young’s modulus of the vessel, A is the tube
wall thickness, p; is the fluid density and R is the radius of the tube. The compliance of
an elastic artery, C', can be presented as the slope of the area-pressure relation

= Ap (9)

where AA and Ap are the differences between the tube maximal and minimal lumen areas
and the pressure during the pulse cycle, respectively.
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Numerical methods and the coupling algorithm. The equations of the fluid low and
the solid wall are solved iteratively with the sequential algorithm illustrated in Figure 2.

N-S Solver
g

Y

Elastic Solver

u
Y

Mesh Update
\Y

Y

Figure 2: Sequential algorithm

To be more spesific, the iteration procedure consists of time integration and three
nested iteration loops (weak coupling):

e Discretize the problem implicitely in time using Newmark’s method and backward
differences. For each time step:

e Split the system into a sequence of uncoupled subproblems by Gauss-Seidel-type
iteration depicted in Figure 2. For each iteration:

e Solve the nonlinear subproblems iteratively by successive linearizations using Picard
and Newton iterations. For each linearization:

e Discretize the linearized equations by domain decomposition and adaptive stabilized
finite element methods [22]. Solve the algebraic systems iteratively in parallel by
appropriate Krylov space methods (CG and BiCGStab).

The outer relaxation loop is terminated when the accuracy of the solution reaches the
steady state convergence tolerance, Tsg, defined by the user. The middle loop is termi-
nated when the error gets smaller than the nonlinear system convergence tolerance, Tiyr.
The stopping criterion for the inner iteration is given by the linear system convergence
tolerance, T7,. By choosing these parameters properly with respect to the mesh parame-
ters and time step sizes, the accuracy of the numerical solution can be flexibly controlled.
For the iteration illustrated in Figure 2, relaxation was applied to the traction force g and
to the displacement wu.
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Parallel implementation. A domain decomposition method has been used to solve
all the equations in parallel processing. The first step of the parallel algorithm is the
partitioning of the finite element mesh discretizing the computational domain, see Fig-
ure 3. The domain is partitioned to subdomains of approximately equal size to achieve
proper load balancing. The linearized equations are assembled and solved using these
partitioned meshes.

Each node of the partitioned mesh is assigned to a processor which owns the nodal
point. The nodal points are either interface nodes or inside a partition. The parts of
the linear equation coefficient matrices and right hand side vectors which are internal to
a partition are assembled as usual. The interface parts of the matrices are assembled
separately and distributed among processors sharing the nodal points on the interfaces.
After the assembly, the solution to the linear equations is obtained using an iterative
solver. In the current work, the solution algorithm was a BiCGStab based iterative solver
using block ILU as the preconditioner.

The parallel implementation of this algorithm is quite simple, and requires only the
following parts of the algorithm to be parallelized:

e Sending and receiving the interface parts of the matrices and vectors
e Matrix-vector multiplication

e Vector norm

e Vector dot product

The implementation uses the MPI (Message Passing Interface), which makes it portable
across wide range of hardware platforms.

3 A NUMERICAL EXAMPLE

To validate the numerical model described in Section 2, a simple test case of propa-
gating pressure pulse in a straight tube was used. The diameter, wall thickness and the
material characteristics of the tube were chosen to correspond to a human thoraic aorta
reported by Lang et al. [23]. They had measured instantaneous aortic cross-section area
of proximal descending thoraic aorta of several patients with echocardiography.

Model dimensions and size. The length of the tube was 0.1 m, inner radius 10.2 mm
and the thickness of the wall 1.8 mm. To reduce computational time, only a 90-degree
cross section of the tube was used and symmetry assumed. The finite element mesh is
shown in Figure 3. The mesh consisted of 1760 and 4434 linear elements for the solid and
the fluid, respectively. The total number of nodes was 5637.
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Figure 3: Computational mesh and mesh division for parallel processing.

Material characteristics. The wall density was 1150 kg/m®, Young’s modulus for the
vessel wall 3.0 - 10° Pa, blood density 1050 kg/m? and blood viscosity 4.0 - 1072 Pas. Pois-
son ratio for the elastic artery was 0.3.

Boundary conditions. On the vertical and horizontal symmetry planes of the quarter
section of the tube, the displacements of the mesh and the velocities of the fluid were set
to zero in the normal directions of the planes. At the inlet and outlet of the tube, the
fluid velocities tangential to the planes, as well as the displacements of the mesh in the
axial direction, were set to zero. A pressure pulse shown in Figure 4 was applied at the
inlet of the tube.

Pressure, Pa

1666 \
| | >

| | v

3 8 10 Time, ms

Figure 4: Pressure pulse at the inlet.
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Time-stepping and convergence tolerances. The total simulation time was 25 ms
and the timestep was 1 ms. Convergence tolerances were Tgs = 1074 Ty = 1074,
T, = 107% and relaxation factor was 0.1 for both the fluid and the solid solvers.

The computation was done with 8 processors on SGI Origin 2000 machine. The mesh
division is illustrated in Figure 3. The total cpu-time per timestep was 3.2 hours, corre-
sponding 0.4 hours per processor. The total cpu-time was 80.0 hours and the processing
time 10.3 hours. Due to the long computing time, the comparison to a single processor
run was done by a simulation with only 5 timesteps. For the single processor run, the
cpu-time per timestep was 1.2 hours. Hence, the speedup of 3.0 was achived.

0.0004543
0.00036:
0.00027
0.0001817

9.085e-05

i] .

Figure 5: Wall displacement at t = 7 ms. The displacement of the structure has been magnified by a
factor of 20. The unit of the scale is meter.

In Figure 5 the enlargement of the tube at the inlet is shown at the phase of the
maximum pressure p = 1666 Pa. The maximum displacement at the wall was 0.4543 mm,
which corresponds to compliance C = 0.24 cm?/mmHg, defined by Equation 9.

In the figure 6 the velocity fields and pressure isosurfaces at different timestages are
shown. After the injection of the pressure pulse (t > 10 ms) the pulse is propagating
through the tube, roughly estimated by the velocity of 6 m/s. At the outlet there is an
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unrealistic backward reflection of the pulse caused by the unproper numerical approx-
imation of the boundary condition. There exists some outflow at the inlet during the
simulation.

Figure 6: Velocity fields and pressure isosurfaces on timesteps t = 5, 10, 15 and 20 ms. The displacements
of the structure have been magnified by a factor of 20.

4 DISCUSSIONS

The results with a test case presented in Section 3 show that the current model gives
a qualitatively realistic results for the pulse injection and propagation in an elastic tube.
Both the pressure and the velocity pulses are propagating through the tube with a finite
velocity. The Moens-Korteweg equation (Eq. 8) gives an estimate of 5.0 m/s (in the sim-
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ulation 6 m/s) for the speed of the propagating pulse. In the Lang et al. in vivo measure-
ments, the compliance (Eq. 9) was 0.23 cm?/mmHg (in the simulation 0.24 cm?/mmHg).

However, at this stage of the work with the current model, a detailed comparison of the
computed results with the measurements is not yet relevant for several reasons. In our
computations, the inlet boundary condition is not realistic. In a real physilogical system,
the maximum pressure at the end of the systolic phase of the contracting heart, is higher
(the difference between systolic and the diastolic pressure is about Ap = 30...40mmHg)
and it is reached slower, approximately in 100ms, than in the simulation. In the physio-
logical system, due to the inertia of the fluid, there exists also a phase shift between the
pressure and the velocity pulses [11].

There are several other fundamental shortcomings to be overcome in the current anal-
ysis, regarding the modelling of a physiologically realistic system. The wall model should
be modified to correspond better with the nonlinear viscoelastic character of the arterial
wall, a feature clearly seen also in Lang et al. measurements. The outlet boundary con-
dition should be improved to function without any unrealistic numerical reflections and,
further on, it should be capable to link the current model with the separate lower level
model (1D or lumped) which enables physiologically correct description of the response
of the rest of the systemic circulation, see Formaggia et al. [19, 24].

Further challages include as well, improvement of the sequential iteration algorithm,
illustrated in Figure 2. With such an algorithm, the larger the vessel is, the smaller relax-
ation factors are needed to achive a convergence, see Nobile [25]. One way to overcome
this problem has been proposed by Riemslagh et al. [26]. Their solution procedure was
based on artificial compressibility.

Even tought the speedup in parallel processing reached in this work was reasonable,
the parallel efficiency of our scheme needs to be improved. Finally, the non-Newtonian
property of blood should be also taken into account in the modelling of realistic systems,
see Gijsen et al. [27].

5 CONCLUSIONS

The modelling of the human cardiovascular system is well motivated but a complicated
and computationally intensive task. In this work, a basic scheme for the loosely coupled
modelling of fluid-structure interaction in the elastic artery was developed and tested with
a simple test case. Qualitative agreement with the physiologically realistic features of the
pulsatile flow in an elastic artery were obtained.
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