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Abstract. An automated method for solving fluid-structure interaction (FSI) problems
is presented. In the method the initially incompressible fluid is given an artificial com-
pressibility that corresponds to the elastic properties of the stucture. The compressibility
is continuously updated by using the current pressure field as a test load. The compress-
ibility may be uniform or have a predefined profile. When the coupled iteration converges
also the effect of the artifical compressibility vanishes. The method is implemented and
successfully applied to 2D and 3D test cases with large deformations.
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1 INTRODUCTION

When fluid-structure interaction (FSI) problems are solved with a loosely coupled
iteration strategy there is a risk of applying unphysical boundary conditions that lead
to severe convergence problems. The reason for this is that initially the fluid domain
is unaware of the constraint of the structural domain, and vice versa. If the iteration
converges this discrepancy will be settled, but sometimes the initial phase is so ill posed
that convergence is practically impossible to obtain.

Imagine an elastic container with inlets only. In the start of the iteration the walls are
at rest which results to zero velocity boundary conditions. If the fluid is incompressible
there is no way to satisfy the continuity equation as there is a net flux into the container.
This problem has been clearly demonstrated in the modeling of fluid-structure interaction
of human artery. The convergence problems have been found to increase with the length
of the artery. Some computations require relaxation factors below 0.01, which seriously
limits the computational efficiency [1, 2].

The problem may be approached by applying the method of artificial compressibility
to the fluid-structure interaction [3]. Artificial compressibility has been previously used
mainly as a trick to eliminate the pressure from the Navies-Stokes equations or to improve
the convergence of the solution procedure [4, 5, 6]. In fluid-structure interaction the
artificial compressibility follows a different argumentation and has a natural physical
explanation: The compressibility is defined so that it makes the fluid imitate the elastic
response of the structure.

2 FLUID-STRUCTURE INTERACTION

We look at the time-dependent fluid-structure interaction of elastic structures and
incompressible fluid. The equations of momentum in the structural domain is

ρ
∂2�u

∂t2
= ∇ · τ + �f in Ωs, (1)

where ρ is the density, �u is the displacement, �f the applied body force and τ = τ(�u) the
stress tensor that for elastic materials may be locally linearized with �u. For the fluid fluid
domain the equation is

ρ

(
∂�v

∂t
+ �v · ∇�v

)
= ∇ · σ + �f in Ωf , (2)

where �v the fluid velocity and σ the stress tensor. For Newtonian incompressible fluids
the stress is

σ = 2µε(�v) − pI, (3)

where µ is the viscosity, ε(�v) the strain rate tensor and p the pressure. In addition the
fluid has to follow the equation of continuity that for incompressible fluid simplifies to

∇ · �v = 0 in Ωf . (4)
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For later use we, however, recall the general form of the continuity equation,

∂ρ

∂t
+ ∇ · (ρ�v) = 0 in Ωf . (5)

The fluid-structure interface, Γfs, must meet two different boundary conditions. At
the interface the fluid and structure velocity should be the same,

�v(�r, t) = �̇u(�r, t), �r ∈ Γfs. (6)

On the other hand, the surface force acting on the structure, �gs, should be opposite to
the force acting on the fluid, �gf , thus

�gs(�r, t) = −�gf (�r, t), �r ∈ Γfs. (7)

A widely used iteration scheme in FSI is the following: First, assume a constant ge-
ometry and solve the Navier-Stokes equation for the fluid domain with fixed boundary
conditions for the velocity. Then calculate the surface forces acting on the structure. Us-
ing these forces solve the structural problem. Using the resulting displacement velocities
as fixed boundary conditions resolve the fluid domain. Continue the procedure until the
solution has converged.

The above described iteration usually works quite well. However, in some cases the
boundary conditions (6) and (7) lead to problems. The elasticity solver is not aware of
the divergence free constraint of the velocity field. Therefore the suggested displacement
velocities used as boundary conditions may well be such that there is no solution for
the continuity equation. A proper coupling method makes the solution possible even if
the velocity boundary conditions aren’t exactly correct. Further, if the Navier-Stokes
equation is solved without taking into account the elasticity of the walls, the forces in
equation (7) will be exaggerated. The pathological case is one where all the boundaries
have fixed velocities. Then even an infinitely small net flux leads to infinite pressure
values. A proper coupling method should therefore also give realistic pressure values even
with inaccurate boundary conditions. The method of artificial compressibility meets both
these requirements.

3 ARTIFICIAL COMPRESSIBILITY

When a surface load is applied to an elastic container it results to a change in the
volume. In many cases of practical interest the change in volume is mainly due to a
pressure variation from the equilibrium pressure that leads to zero displacements. If the
structural domain is described by linear equations the change in volume dV has a direct
dependence on the change in the pressure, dP , or

dV

V
= c dP. (8)
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This assumption limits the use of the model in highly nonlinear cases.
The change in the volume should be the same as the net volume flux into the domain.

As this cannot be guaranteed during the iteration, some other way to enable the material
conservation must be used. A natural choice is to let the density of the fluid vary so that
is has the same pressure response as the elastic walls,

dρ

ρ
= c dP, (9)

where c is the artificial compressibility. This is interpreted locally and inserted to the
continuity equation (5) while neglecting the space derivative of the density, thus

c
dp

dt
+ ∇ · �v = 0, (10)

where dp is the local pressure change. Here the time derivative of pressure must be
understood as an iteration trick. A more precise expression is

c

∆t

(
p(m) − p(m−1)

)
+ ∇ · �v(m) = 0, (11)

where m is the current iteration step related to fluid-structure coupling. When the iter-
ation converges p(m) → p(m−1) and therefore the modified equation is consistent with the
original one. The weak form of the equation for finite element method (FEM) may easily
be written, ∫

Ωf

(∇ · �v(m))ϕp dΩ +
1

∆t

∫
Ωf

c
(
p(m) − p(m−1)

)
ϕp dΩ = 0, (12)

where ϕp is the test function.
The artificial compressibility may be calculated analytically in simple geometries. For

example, for a thin cylinder with thickness h and radius R the compressibility is c =
2R/Eh [3], where E is the Young’s modulus, and correspondingly for a sphere c = 3R/Eh.

3.1 COMPRESSIBILITY DISTRIBUTION

Above it was assumed that the fluid has a constant compressibility. It may, however,
be more favorable to restrict the compressibility to a limited distance from the elastic
wall. Then compressibility may be estimated locally from

c(�r) =
1

S

ds

dp
, (13)

where ds is the perpendicular displacement of the surface, and S is the thickness of the
compressible fluid layer.
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In equation (13) the compressibility changes stepwise. It is also possible to define
compressibility as a smooth function that diminishes from the surface. Let g(s) be a
function that fulfills the following criteria,∫ ∞

0
g(s) ds = 1, (14)

g′(s) ≤ 0. (15)

Then the artificial compressibility is a function that depends both on the elasticity of the
surface and on the distance from it,

c(�r) = g(s)
ds

dp
. (16)

Simple choices that meet this condition are a linear behavior,

g(s) =
2

S
(1 − min (s/S, 1)) , (17)

and an exponentially decaying compressibility,

g(s) =
1

S
exp(−s/S). (18)

This approach has the disadvantage that in general s, the distance from the moving
surface, is computationally expensive to calculate. In some cases approximate estimates
are however easily derived. For example, the linear model applied to the case of an elastic
cylinder with S = R gives

c =
4r

Eh
. (19)

An infinitely thin compressible boundary layer is obtained when S → 0 and it results
to the Dirac delta-function g(s) = δ(s). The integral over the volume transforms now to
an integral over the surface and the weak form of the modified continuity equation yields

∫
Ωf

(∇ · �v(m))ϕp dΩ +
1

∆t

∫
Γfs

C
(
p(m) − p(m−1)

)
ϕp dΓ = 0, (20)

where C = ds/dp. This alternative has the advantage that the physical boundary con-
dition is described by a numerical boundary condition. The large compressibility values
within the surface may, however, result to significant errors in the momentum equation.
Therefore this approach might be best applied to cases where the change in the boundary
position is less than the size of the elements.
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4 COMPUTING ARTIFICIAL COMPRESSIBILITY

In most practical cases the elastic response of the structure cannot be calculated ana-
lytically. Then the compressibility may also be computed from equation (8) by applying
a pressure change dP to the system,

c =
1

V

dV

dP
. (21)

The change in volume may be calculated by comparing it to initial volume, thus

c =
V − V0

V0

1

dP
. (22)

For small deformations ds = �u · �n, where �n is the surface normal. Therefore we may use
an alternative form convenient for numerical computations,

c =

∫
Γfs

(�u · �n) dA∫
Ωf
dV

∫
Γfs

dA∫
Γfs

dp dA
. (23)

This way c has a constant value over the domain.
The nonuniform compressibility may be defined locally by equation (16). Numerically

more robust alternative may be to average the deformations over the surface,

c(s) = g(s)

∫
Γ(�u · �n) dA∫

Γ dp dA
, (24)

and similarly for compressible boundary condition

C(s) =

∫
Γ(�u · �n) dA∫

Γ dp dA
. (25)

Generally, it seems a good strategy to keep the functional behavior c(�r) user defined.
Computing compressibility becomes then just a matter of scaling,

c(�r) = c0(�r)

∫
Γfs

(�u · �n) dA∫
Ωf
c0(�r)dV

∫
Γfs

dA∫
Γfs

dp dA︸ ︷︷ ︸
scaling factor

. (26)

A suitable test load for computing compressibility is the current pressure load on the
structure. However, for the first step the compressibility must be predefined. It is safer
to over-estimate it since that leads to too small a pressure increase. Too large a pressure
increase might ruin the solution of the elasticity solver and by that also the computational
mesh used by the flow solver would be corrupted. Therefore some sort of exaggeration
factor exceeding unity might be used to ensure convergence.
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5 RESULTS

In the special case of elastic tube the convergence of the scheme has been proven [3].
For other cases practical test are needed. To test the feasibility of the method it was
implemented in ELMER finite element software [7]. The software already had the other
necessary models as described in [1]. We performed tests with 2D and 3D cube having
one elastic wall.

5.1 2D case

The 2D geometry consisted of a unit square (1m × 1m) with one elastic wall with
thickness of 0.1 m. From the opposite side a parabolic velocity profile with mean velocity
of 0.01 m/s was enforced. The third side had zero displacements and velocities and the
fourth wall was a symmetry axis.

The densities of the fluid and solid were both 1 kg/m3, the viscosity was 1 Pas and
the Young’s modulus 1 MPa. The time-step was 1 s and the calculation was continued
until the computational mesh consisting of 240 bilinear elements was corrupted. The
convergence criteria for determining the iteration for the current time-step was a relative
change of 10−4 in the norm of all field variables.

All in all 60 time-steps were computed. Convergence for each time-step was obtained
after 12–19 coupled iterations as shown in Fig. 1. This must be considered to be quite a
high number but in this case the coupling is pathological and the solution of the Navier-
Stokes equation is not even possible without the scheme. The convergence history of the
computed compressibility is shown in Fig. 2. Within each time-step the compressibility
converges accurately to reflect the elastic strain of the moving wall.

The fluid flux inside the square is 0.01 m2/s. Therefore the volume as a function of
time should be (1+0.01 t/s)m2. This is compared to the computed volume in Fig. 4. The
agreement is quite excellent even with this as the error in the end of the simulation is less
than 0.1 %.

Fig. 3 shows the computed compressibility as registered after each time step. The
compressibility decreases gradually as the elastic strain increases.

5.2 3D case

The 3D case was quite similar to 2D case. The geometry was extruded 1 m in the third
dimension and the new boundaries were then given either symmetry boundary conditions
or no-slip conditions. The material parameters were unaltered. The computational mesh
was slightly sparser consisting of 1200 elements.

In this case 39 time-steps could be computed before the mesh was corrupted. The
convergence criteria was 10−3 for all field variables and convergence was obtained in 8–15
iterations. The relative error of the material conservation was slightly higher in this case,
ranging up to 0.2 % as may be seen in Fig. 7. The computed compressibility has a similar
behavior as in the 2D case, see Fig. 8. However, the absolute value is smaller by almost
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one order of magnitude which reflects the fact that the 3D structure is stiffer. Fig. 9
shows the deformed cube at 2, 20, 30 and 39 seconds.

6 CONCLUSIONS

In this paper an automated scheme for resolving the interaction between elastic struc-
tures and incompressible fluid was presented. The method is easily implemented as only
the continuity equation requires some minor changes. The method gives good convergence
in a very strongly coupled test case.

In the trial runs it was noticed that small time-steps were more difficult to resolve. It
seems therefore likely that the larger weight resulting from a small time-step may cause
numerical problems. Even though the artificial compressibility has a physical basis it is
still constrained by numerical considerations.

In addition to the constant compressibility some alternatives for non-uniform compress-
ibility were suggested. They have physically closer resemblance to the original phenomena
of fluid-structure interaction since the compressibility may be limited to a thin layer at
the interface.

The test cases in this paper were very linear in nature and further tests are required
to demonstrate the usability of the approach in a wider range of problems.

8



Peter R̊aback, Juha Ruokolainen, Mikko Lyly, and Esko Järvinen

REFERENCES

[1] E. Järvinen, M. Lyly, J. Ruokolainen and P. R̊aback. Three dimensional fluid-
structure interaction modeling of blood flow in elastic arteries, Eccomas Compu-
tational Fluid Dynamics Conference, Swansea, 2001.

[2] L. Formaggia, J. F. Gerbeau, F. Nobile and A. Quarteroni. Numerical treatment of
defective boundary conditions for the Navier-Stokes equations, EPFL-DMA Analyse
et Analyse Numerique, 20 (2000).

[3] K. Riemslagh, J. Vierendeels, and E. Dick. An efficient coupling procedure for flexible
wall fluid-structure interaction, Eccomas Congress on Comp. Meth. in Appl. Sci. and
Eng., Barcelona, 2000.

[4] A. J. Chorin. A Numerical method for solving incompressible viscous flow problems,
J. Comput. Phys. 135, 118–125 (1997).

[5] S. E. Rogers, D. Kwak and U. Kaul. On the accuracy of the pseudocompressibility
method in solving the incompressible Navier-Stokes equations, Appl. Math. Modelling,
11, 35–44 (1987).

[6] F. D. Carter and A. J. Baker. Accuracy and stability of a finite element pseudo-
compressibility CFD algorithm for incompressible thermal flows, Num. Heat Transfer,
Part B, 20, 1–23 (1991).

[7] ELMER finite element software homepage, http://www.csc.fi/elmer

9



Peter R̊aback, Juha Ruokolainen, Mikko Lyly, and Esko Järvinen

0 10 20 30 40 50 60

12

14

16

18

20

n

m

Figure 1: Number of fluid-structure iterations with time-step
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Figure 2: Convergence history of the computed compressibility for 11 first time-steps
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Figure 3: Computed compressibility with relative volume change
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Figure 4: Relative error of the material balance with iteration

Figure 5: The deformed geometry and velocity field after 2, 20, 40 and 60 seconds
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Figure 6: Computational mesh after 0 and 60 seconds
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Figure 7: Relative error of material balance with iteration in the 3D case
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Figure 8: Computed compressibility with relative volume change in the 3D case
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Figure 9: The deformed geometry at 2, 20, 30 and 39 seconds. The velocity is shown by vectors and
colors on the elastic wall and on the two symmetry planes.
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